英伟达 Jetson Nano 常用命令及软件详解

注意

本文章在 Jetpack4.4 下通过测试,请根据您使用的版本进行调整,并留意本文章更新时间(即本文列出的方法可能已经不适用于最新的系统)

更换软件源

首先对 /etc/apt/sources.list 进行更改

1
sudo vi /etc/apt/sources.list

将原本的内容全部删去,替换为以下内容(清华源)

1
2
3
4
5
6
7
8
9
10
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-proposed main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-proposed main restricted universe multiverse

更新所有软件

1
sudo apt update && sudo apt upgrade

更换 pip

1
2
sudo python3 -m pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pip -U
sudo python3 -m pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

CUDA

由于 CDUA 本身已经随系统安装好了,所以我们只需要导入 CUDA 即可

修改.bashrc,在末尾加入

1
2
3
export CUDA_HOME=/usr/local/cuda-10.2
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
export PATH=$CUDA_HOME/bin:$PATH

此时再执行 nvcc -V 时输出如下

1
2
3
4
5
bmyjacks@Jetson-nano:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_21:14:42_PDT_2019
Cuda compilation tools, release 10.2, V10.2.89

cuDNN

系统也随同附带了 cuDNN,我们将其进行测试

进入目录并运行样例

1
2
3
cd /usr/src/cudnn_samples_v8/mnistCUDNN
sudo make
./mnistCUDNN

输出如下即表明 cuDNN 已成功配置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
bmyjacks@Jetson-nano:/usr/src/cudnn_samples_v8/mnistCUDNN$ ./mnistCUDNN
Executing: mnistCUDNN
cudnnGetVersion() : 8000 , CUDNN_VERSION from cudnn.h : 8000 (8.0.0)
Host compiler version : GCC 7.5.0

There are 1 CUDA capable devices on your machine :
device 0 : sms 1 Capabilities 5.3, SmClock 921.6 Mhz, MemSize (Mb) 3964, MemClock 12.8 Mhz, Ecc=0, boardGroupID=0
Using device 0

Testing single precision
Loading binary file data/conv1.bin
Loading binary file data/conv1.bias.bin
Loading binary file data/conv2.bin
Loading binary file data/conv2.bias.bin
Loading binary file data/ip1.bin
Loading binary file data/ip1.bias.bin
Loading binary file data/ip2.bin
Loading binary file data/ip2.bias.bin
Loading image data/one_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.426146 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.434375 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 1.096771 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 6.034271 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 6.524843 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 11.360573 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 4.602657 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 4.620104 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 4.664479 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 6.318178 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 16.556978 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 20.708542 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.9999399 0.0000000 0.0000000 0.0000561 0.0000000 0.0000012 0.0000017 0.0000010 0.0000000
Loading image data/three_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.506354 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.516302 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 1.093385 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 6.042864 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 6.673021 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 11.380677 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 4.674010 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 4.696406 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 5.993489 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 6.664219 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 16.621042 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 20.584999 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.0000000 0.0000000 0.9999288 0.0000000 0.0000711 0.0000000 0.0000000 0.0000000 0.0000000
Loading image data/five_28x28.pgm
Performing forward propagation ...
Resulting weights from Softmax:
0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 0.9999820 0.0000154 0.0000000 0.0000012 0.0000006

Result of classification: 1 3 5

Test passed!

Testing half precision (math in single precision)
Loading binary file data/conv1.bin
Loading binary file data/conv1.bias.bin
Loading binary file data/conv2.bin
Loading binary file data/conv2.bias.bin
Loading binary file data/ip1.bin
Loading binary file data/ip1.bias.bin
Loading binary file data/ip2.bin
Loading binary file data/ip2.bias.bin
Loading image data/one_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.217812 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.225937 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.566198 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 3.001250 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 3.609010 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 5.703125 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 2.546094 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 2.612812 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 2.616927 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 3.377396 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 9.275365 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 10.506875 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000001 1.0000000 0.0000001 0.0000000 0.0000563 0.0000001 0.0000012 0.0000017 0.0000010 0.0000001
Loading image data/three_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.319896 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.347083 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.665052 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 3.052240 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 3.391302 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 5.694531 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 2.624948 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 2.650052 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 2.670677 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 3.380937 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 8.219323 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 10.516041 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000714 0.0000000 0.0000000 0.0000000 0.0000000
Loading image data/five_28x28.pgm
Performing forward propagation ...
Resulting weights from Softmax:
0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 1.0000000 0.0000154 0.0000000 0.0000012 0.0000006

Result of classification: 1 3 5

Test passed!

TensorRT

安装依赖

1
python3 -m pip install pillow

下载 mnist 数据集

1
2
cd /usr/src/tensorrt/data/mnist
sudo python3 download_pgms.py

编译文件

1
2
cd /usr/src/tensorrt/samples/sampleMNIST
sudo make

运行样例

1
2
cd /usr/src/tensorrt/bin
./sample_mnist

输出(由于是随机选取数字,所以输出的数字可能不一样,但是最后显示 PASSED 即可)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
bmyjacks@Jetson-nano:/usr/src/tensorrt/bin$ ./sample_mnist
&&&& RUNNING TensorRT.sample_mnist # ./sample_mnist
[02/11/2021-16:07:00] [I] Building and running a GPU inference engine for MNIST
[02/11/2021-16:07:20] [I] [TRT] Detected 1 inputs and 1 output network tensors.
[02/11/2021-16:07:20] [I] Input:
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@==-%- =@@@@
@@@@@@@@%%*-- .- :#@@@@
@@@@@@@# ***#%@@@@@
@@@@@@@@. :: @@@@@@@@@@
@@@@@@@@*-+ .@@%-@@@@@@@@@@
@@@@@@@@@@@- *@@@@@@@@@@@@@@
@@@@@@@@@@@= :@@@@@@@@@@@@@@
@@@@@@@@@@@@: #@@@@@@@@@@@@@
@@@@@@@@@@@@% .-+@@@@@@@@@@@
@@@@@@@@@@@@@* +%@@@@@@@@@
@@@@@@@@@@@@@@%: =%@@@@@@@@
@@@@@@@@@@@@@@@@* :@@@@@@@@
@@@@@@@@@@@@@@@@@ #@@@@@@@
@@@@@@@@@@@@@@%=: .@@@@@@@@
@@@@@@@@@@@@%=. :@@@@@@@@
@@@@@@@@@@%+. :*@@@@@@@@@
@@@@@@@@%#. :*@@@@@@@@@@@
@@@@@@@-. :*@@@@@@@@@@@@@
@@@@#-. =@@@@@@@@@@@@@@@
@@@@= .==@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@

[02/11/2021-16:07:20] [I] Output:
0:
1:
2:
3:
4:
5: **********
6:
7:
8:
9:

&&&& PASSED TensorRT.sample_mnist # ./sample_mnist

VisionWorks

进入目录

1
cd /usr/share/visionworks

TODO

OpenCV

TODO

TensorFlow(GPU)

更新系统

1
sudo apt update && sudo apt upgrade -y

安装依赖

1
sudo apt install libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev zip libjpeg8-dev liblapack-dev libblas-dev gfortran python3-pip

安装 python 依赖

1
sudo python3 -m pip install -U pip futures protobuf pybind11 testresources setuptools numpy==1.16.1 future==0.17.1 mock==3.0.5 h5py==2.9.0 keras_preprocessing==1.0.5 keras_applications==1.0.8 gast==0.2.2

安装 TensorFlow

1
2
3
4
# TF-2.x
sudo python3 -m pip install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v44 tensorflow==2.3.1+nv20.12
# TF-1.15
sudo python3 -m pip install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v44 ‘tensorflow<2’

Keras

1
python3 -m pip install keras

Pandas

1
python3 -m pip install pandas

sklearn

1
python3 -m pip install sklearn